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Abstract
The period of the layered structure in smectic A and smectic C liquid crystal phases has been
calculated numerically by direct minimization of the mean-field free energy which takes into
account the interaction between molecules in adjacent smectic layers. The smectic layer
spacing is calculated for two systems characterized by conventional and anomalously weak
layer contraction in the smectic C phase. It is then compared with the simple estimate based on
the average projection of the molecular long axis on the smectic layer normal. For both
systems, temperature variation of the average molecular projection is qualitatively similar to
that of the calculated layer spacing although certain quantitative deviations exist.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Liquid crystal soft matter materials form a number of smectic
phases with orientational and partial translational order of
anisotropic molecules. In the smectic C (SmC) phase and other
tilted smectic phases the predominant orientation of primary
molecular axes, specified by the director n, is tilted with respect
to the smectic layer normal k by an angle �. Tilted smectic
phases exist also in other soft matter systems including, in
particular, mesogenic polymers and SmC elastomers [1–3].

If at least a part of the molecules in the SmC phase are
chiral, the phase appears to be ferroelectric. In each smectic
layer the polarization is induced by the tilt in the direction
perpendicular to the tilt plane. There exist also smectic phases
where the direction of the tilt changes strongly from layer to
layer [4]. In particular, in the anticlinic smectic C∗

A phase the
direction of the tilt and the polarization alternate from layer
to layer and, as a result, the phases possess antiferroelectric
properties. In the frustration region between ferro- and
antiferroelectric phases some smectic materials exhibit the so-
called intermediate phases with periodicity of three or four
layers. In all these tilted phases the energy associated with
the coupling of directors in adjacent layers is much smaller
than the energy of the tilt inside one layer. Ferroelectric
and antiferroelectric liquid crystals are considered to be very
promising materials for applications in new electro-optic
devices, and they are already used in camcorders, etc.

When a liquid crystal undergoes a transition from the
orthogonal smectic A (SmA) phase to the tilted SmC phase, the
layer spacing d usually decreases by a factor of cos � [5, 6].
This layer shrinkage appears to be a very negative factor in
manufacturing and operation of electro-optic devices based
on ferro- and antiferroelectric smectic C∗ liquid crystals.
The layer contraction leads to the development of chevron
structures accompanied by the formation of the so-called
‘zigzag’ defects which seriously degrade the quality of electro-
optic devices. Fortunately, different materials show varying
degrees of contraction across the SmA–SmC phase transition.
Recently it has been found that there exist a number of
advantageous smectic C∗ materials with different molecular
structures [7–10] with anomalously weak layer contraction in
the SmC phase. An understanding of why different materials
show different degrees of layer contraction at the SmA∗–SmC∗
transition is also extremely interesting from a fundamental
research point of view, because it enables one to understand
different mechanisms of the tilting transition.

The properties of smectic materials with weak layer
contraction were first interpreted by A de Vries using the
so-called cone model [11–15]. This model is based on the
assumption of a molecular pretilt in the SmA phase, where the
tilted molecules are distributed randomly on the cone, and at
the SmA–SmC transition the azimuthal directions are ordered,
leading to the effective tilt of the director. In this model,
the tilt is not accompanied by any layer contraction. Very
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recently a detailed molecular theory of the SmA–SmC phase
transition has been proposed by the authors [16, 17]. The
theory enables us to describe both conventional smectics C
and smectics with anomalously weak layer contraction using
the same molecular model. At the same time, the results
of the theory do not support the original cone model of de
Vries as the orientational distribution function in the SmA
phase appears to be qualitatively the same in conventional
materials and materials with weak layer contraction. In
this theory, the anomalously weak layer contraction occurs
because the contraction caused by the tilt is compensated
by the layer expansion due to the growth of the nematic
order parameter. Such a compensation, however, may occur
only if two coupling constants in the model interaction
potential are close to each other [17] and if the nematic
order parameter is far from saturation below the SmA–SmC
transition. This explains why the majority of smectic materials
are characterized by strong layer contraction. The coupling
constants have been calculated numerically for a number
of interaction potentials including the Gay–Berne potential,
electrostatic coupling of pairs of molecular dipoles and the
dipolar induction interaction [17, 18].

The main limitation of the theory presented in [16, 17]
is related to the fact that only interactions between molecules
within the same smectic layer have been taken into
account. This approximation enables one to calculate the tilt
angle which is indeed mainly determined by the intralayer
interactions. At the same time, the smectic layer spacing
is obviously determined by the interlayer interactions. As
a result, the layer spacing has been estimated as an average
projection of the long molecular axis on the smectic layer
normal. As discussed in detail in [17], a correlation between
the actual smectic layer period and the projection of the long
axis is supported by experiment [19] at least for several smectic
C materials. Nevertheless, it would be more consistent to
determine the layer spacing by direct minimization of the total
free energy of the smectic phase. This can only be done if
the interaction between molecules located in different layers is
taken into consideration. Moreover, such a minimization can
be performed only if the particular form of the intermolecular
interaction potential is known.

In this paper, we generalize the molecular theory of
the SmC phase taking into account the interaction between
molecules in adjacent smectic layers. Tilt angle, nematic
order parameter and the layer spacing are determined
by minimization of the free energy in the mean-field
approximation. The rigorously obtained temperature variation
of the layer spacing is then compared with the previously used
average projection of molecular long axes on the layer normal.

2. General theory

In the generalized molecular-field approximation, the free
energy of the anisotropic fluid can be written in the form

F = 1
2ρ

2
∫

f (r1, a1)�(|r1 − r2| − ξ1,2)

× Uatt(a1, a2, r1 − r2) f (r2, a2) dr1 dr2 da1 da2

+ 1
2λkBTρ2

∫
f (r1, a1)[1 − �(|r1 − r2| − ξ 1,2)]

× f (r2, a2) dr1 dr2 da1 da2

+ kBTρ

∫
f (r1, a1) ln[ f (r1, a1)] dr1 da1, (1)

where ρ is the molecular number density and the one-
particle distribution function f depends on the position of
the molecular center of mass ri and the unit vector ai in
the direction of the molecular primary axis. The distribution
function is normalized as

∫
f (r, a) dr da = V , (2)

where V is the volume of the system. The first term
in equation (1) is the average internal energy where
Uatt(a1, a2, r1 − r2) is the pair attraction interaction potential
and the step function �(|r1 − r2| − ξ 1,2) describes the steric
cutoff: �(|r1 − r2| − ξ 1,2) = 0 if the molecular cores
intersect and �(|r1 − r2| − ξ 1,2) = 1 otherwise. The second
term in equation (1) is the so-called packing entropy which
describes the excluded-volume effects. Here the particular
form of the density-dependent factor λ(ρ) ∼ 1 depends on an
approximation [20]. The third term describes the contribution
from the ideal-gas-like entropy.

If the SmA–SmC transition is far from the nematic–SmA
one, the smectic order in the SmC phase is usually high,
and one may use the approximation of perfect smectic order.
This approximation can also be used in the SmA phase if the
nematic–SmA transition is strongly first order. In the case
of perfect smectic ordering with period d , the one-particle
distribution function can be expressed as a sum over all smectic
layers:

f (r, a) = d
∞∑

n=−∞
f (a)δ(z − nd). (3)

Then the free energy (1) can be expressed as a sum of the free
energies of each layer and the free energy per unit area of a
single smectic layer can be written as

Flayer = F
d

V
= 1

2
ρ2

2

∫ ∫
f (a1) f (a2)

×
∫ ∞∑

n=−∞
Ueff (a1, a2, [r⊥ + knd]) dr⊥ da1 da2

+ kBTρ2

∫
f (a1) ln[ f (a1)] da1, (4)

where ρ2 = ρd is the molecular number density per area
of a smectic layer and the effective intermolecular interaction
potential is defined as

Ueff (a1, a2, r) = Uatt (a1, a2, r) �(|r| − ξ 1,2)

+ λkBT [1 − �(|r| − ξ 1,2)]. (5)

In equation (4) the predominant term corresponds to n =
0, i.e. the major contribution comes from intermolecular
interactions within the same smectic layer. We assume that the
orientational order parameters of the SmC phase are mainly
determined by those intralayer interactions. At the same time,
the average interlayer spacing is determined by the interactions
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between adjacent layers, which correspond to the terms with
n = ±1. Accordingly, we neglect the other terms in the sum
over n and notice that, in the non-polar phase, the contributions
with n = 1 and −1 are equal. Then the layer free energy can
be expressed as

Flayer = 1
2ρ

2
2

∫ ∫
f (a1) f (a2)

∫
Ueff(a1, a2, r⊥) dr⊥ da1 da2

+ ρ2
2

∫ ∫
f (a1) f (a2)

×
∫

Ueff(a1, a2, [r⊥ + kd]) dr⊥ da1 da2

+ kBTρ2

∫
f (a1) ln[ f (a1)] da1. (6)

Minimizing the functional (6), we obtain that

f (a) = 1

Z
exp

[
− UM F (a)

kBT

]
, (7)

where

Z =
∫

exp

[
−UM F (a)

kBT

]
da, (8)

and where the mean-field potential is

UM F (a) = ρ2

∫
f (a2)

∫
[Ueff(a1, a2, r⊥)

+ 2Ueff(a1, a2, [r⊥ + kd])] da2. (9)

3. Expansion of the intermolecular potential

Generally, it is convenient to expand the pair interaction
potential, integrated over the intermolecular distance r⊥, in
spherical harmonics and to take into account the first few
terms [17]. Introducing the polar and azimuthal angles of
molecular axes γ1,2 and ϕ1,2, respectively, the expansion of the
pair potential is [17]

ρ2

∫
U (a1, a2, r⊥) dr⊥ =

∞∑
n=0

∞∑
l=0

min(n,l)∑
m=0

C (m)

ln (q)

× P(m)
n (cos γ1)P(m)

l (cos γ2) cos(mφ), (10)

where φ = ϕ1 − ϕ2. The potential should be invariant under
the transformation a ↔ −a which excludes the terms with odd
n and l from (10). The permutational symmetry, 1 ↔ 2, yields
that C (m)

ln = C (m)

nl .
Truncating the series and keeping the harmonics with

l, n � 2, one obtains

ρ2

∫
U(a1, a2, r⊥) dr⊥ = w0 + w1[P2(cos γ1) + P2(cos γ2)]

+ w2 P2(cos γ1)P2(cos γ2)

+ w3 sin2 γ1 sin2 γ2 cos 2φ + w4 sin 2γ1 sin 2γ2 cos φ (11)

which is similar to the expression used in our recent
studies [17, 18]. Note that the constant term is also relevant
in the present study since it depends on the layer thickness and
thus should be taken into account in the minimization of the

free energy. The constants w0−4 are given by the following
integrals:

w0 = ρ2

4π

∫ π

0
dγ1 sin γ1

∫ π

0
dγ2 sin γ2

×
∫ 2π

0
dφ

∫
U (a1, a2, r⊥) dr⊥, (12)

w1 = 5ρ2

4π

∫ π

0
dγ1 sin γ1 P2(cos γ1)

∫ π

0
dγ2 sin γ2

×
∫ 2π

0
dφ

∫
U (a1, a2, r⊥) dr⊥, (13)

w2 = 25ρ2

4π

∫ π

0
dγ1 sin γ1 P2(cos γ1)

×
∫ π

0
dγ2 sin γ2 P2(cos γ2)

×
∫ 2π

0
dφ

∫
U(a1, a2, r⊥) dr⊥, (14)

w3 = 152ρ2

27π

∫ π

0
dγ1 sin3 γ1

∫ π

0
dγ2 sin3 γ2

×
∫ 2π

0
dφ cos(2φ)

∫
U(a1, a2, r⊥) dr⊥, (15)

w4 = 152ρ2

27π

∫ π

0
dγ1 sin γ1 sin 2γ1

∫ π

0
dγ2 sin γ2 sin 2γ2

×
∫ 2π

0
dφ cos φ

∫
U(a1, a2, r⊥) dr⊥. (16)

The corresponding mean-field potential (9) depends on the
order parameters which define the ordering tensor Q. In liquid
crystal phases with a symmetry plane, the tensor Q can be
written in the following general form:

Qi j = Sk(ki k j −δi j/3)+ 1
2 Pk(ci c j −hi h j )+ 1

2 V (ki c j +ci k j),

(17)
where

Sk = 〈P2(cos γ )〉, Pk = 〈sin2 γ cos 2ϕ〉,
V = 〈sin 2γ cos ϕ〉. (18)

Then the mean-field potential is

UM F (γ, ϕ) = w0 + w1[Sk + P2(cos γ )]
+ w2Sk P2(cos γ ) + w3 Pk sin2 γ cos 2ϕ

+ w4V sin 2γ cos ϕ. (19)

Substituting equations (18) and (19) into equation (6) one
obtains the following expression for free energy in terms of the
orientational order parameters:

Flayer = − 1
2ρ2[w0 + 2w1Sk + w2S2

k + w3 P2
k + w4V 2]

− kBTρ2 ln Z . (20)

In the general case, the smectic period can be found
by minimization of the total free energy (20). It is known,
however, that in the mean-field approximation the minimum
of the free energy with respect to a parameter (which is
not an ensemble average) corresponds to that of the average
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interaction energy [17, 21], which in the present case is
expressed as

U(d) = w0(d)+2w1(d)Sk +w2(d)S2
k +w3(d)P2

k +w4(d)V 2.

(21)
In the minimization procedure one may take into account
only the d-dependent parts of the functions w0−4, which
are determined by the interaction between nearest-neighbor
smectic layers. The corresponding contributions to the
coupling constants w0−4 as given by equations (12)–(16) with
the total potential U(a1, a2, r⊥) replaced by 2Ueff(a1, a2, [r⊥+
kd]).

Clearly, both intermolecular attraction Uatt and steric
repulsion have a strong effect on the equilibrium smectic layer
thickness. The attractive forces tend to bring the molecules
in neighboring layers closer, i.e. to decrease the layer spacing
d . This causes, however, a substantial decrease of the packing
entropy. As a result of the balance between these two factors,
an equilibrium layer thickness appears to be slightly smaller
than the molecular length.

It should be noted that the actual minimization of the
free energy with respect to the smectic layer period is only
possible if a particular form of the intermolecular interaction
potential and the related coefficients wi (d) are known. In
the following section we consider the Gay–Berne interaction
potential, which is frequently used in modeling of nematic and
smectic liquid crystal phases.

4. Gay–Berne potential

The model Gay–Berne (GB) interaction provides a valuable
illustration for the general consideration presented above.
The GB potential is a kind of an anisotropic Lennard-Jones
potential:

UGB(a1, a2, r) = 4ε(a1, r̂, a2){[r/r0 − σ(a1, r̂, a2) + 1]−12

− [r/r0 − σ(a1, r̂, a2) + 1]−6} (22)

with the orientationally dependent range

σ(a1, r̂, a2)

=
[

1 − χ

2

(
(r̂ · a1 + r̂ · a2)

2

1 + χa1 · a2
+ (r̂ · a1 − r̂ · a2)

2

1 − χa1 · a2

)]−1/2

(23)

and strength of the interaction

ε(a1, r̂, a2) = ε0[1 − χ2(a1 · a2)
2]−1/2

×
[

1 − χ ′

2

(
(r̂ · a1 + r̂ · a2)

2

1 + χ ′a1 · a2
+ (r̂ · a1 − r̂ · a2)

2

1 − χ ′a1 · a2

)]2

.

(24)

Here r0 is the width of the molecule and the constants χ =
(κ2 − 1)/(κ2 + 1) and χ ′ = (κ ′1/2 − 1)/(κ ′1/2 + 1) are
determined by the relative elongation of the molecule κ as well
as by the parameter κ ′, defined as the ratio of the potential well
depths for side-to-side and end-to-end molecular orientations,
respectively. We assume that the steric cutoff takes place at
ξ1,2 = r0σ(a1, r̂, a2) which determines the size of the rigid
molecular core.

Using the GB potential UGB and the corresponding steric
cutoff distance ξ1,2 the d-dependent contributions to the

Figure 1. Dimensionless coefficients vn(d) of the attractive (a) and
repulsive (b) interactions calculated for the GB potential with
parameters κ = 4 (molecular elongation) and κ ′ = 8.

constants w0−4 are given by equations (12)–(16) with the
effective potential U(a1, a2, r⊥) taken as

2U eff
GB(a1, a2, [r⊥ + kd])

=
{

2UGB(a1, a2, [r⊥ + kd]), when r > r0 σ(a1, r̂, a2)

2λkBT, when r � r0 σ(a1, r̂, a2).

It is convenient to express the coupling constants as the
sums of two terms:

wn(d) = 2ρ2r 2
0 ε0

[
vatt

n (d) + λkBT

ε0
vrep

n (d)

]
, (25)

where the dimensionless parameters v are determined only by
the molecular geometry.

Typical variation of the coupling constants vn(d)

as functions of the smectic layer spacing d , calculated
numerically using the GB potential, are presented in figure 1.

5. Results and discussion

5.1. Smectic A phase

As discussed above, we assume that the temperature variation
of the orientational order parameters is determined by the
interactions within the same layer. In contrast, the smectic
layer thickness is determined by the small d-dependent part
of the free energy. In the SmA phase, the order parameters
Pk = V = 0 and the averaged interaction energy (21) depends
only on the nematic order parameter S = Sk . In figure 2 the
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Figure 2. Average interlayer interaction energy U as a function of
the smectic layer spacing d for the values of the nematic order
parameter S between 0.5 and 1 (indicated in-line). Dimensionless
coefficients vn(d) are as in figure 1, the temperature is kBT = 0.4ε0

and λ = 1. The inset shows shallow minima which correspond to the
equilibrium layer thickness.

variation of the average interaction energy U(d) as a function
of d is presented for different values of the nematic order
parameter S. All the curves possess the global minima at
d = 0 which corresponds to the general stability of the layered
system. At the same time, the shallow minima in the vicinity
of d ≈ 4r0 correspond to the average layer spacing close to
(but slightly higher than) the molecular length 4r0. One can
readily see that the nematic order stabilizes the smectic order,
since both minima are more pronounced for larger values of
S. One notes also that the layer spacing d grows slowly with
increasing S.

5.2. Smectic C phase

In the SmC phase, the average intermolecular interaction
energy depends on all three orientational order parameters
S, P and V , which are mainly determined by strong in-
layer interactions. The order parameters of the Sm phase
and the corresponding layer spacing have been calculated
in our previous paper [17] for a number of cases including
the systems with conventional and anomalously weak layer
contraction. It has been assumed that the smectic layer
spacing is approximately equal to the average projection of the
molecular long axis on the layer normal. Now it is possible to
compare the layer spacing, calculated approximately in [17],
with the one obtained by direct minimization of the free energy.
The resulting temperature variation of the layer spacing for
two limiting cases with conventional and very weak layer
contraction is presented in figure 3. One can readily see that the
variation of the calculated layer thickness is qualitatively very
similar to that of the averaged molecule projection 〈cos γ 〉.
At the same time, the calculated layer thickness is slightly
lower, and it grows slower in the SmA phase. One notes also
that the curvature of the layer spacing curves obtained directly
from the free energy is different from the ones calculated

Figure 3. Calculated smectic layer thickness (a) and the averaged
projection of the molecular long axis on the layer normal (b) for two
transition scenarios: conventional layer contraction (solid) and weak
layer contraction (dashed). Order parameters of the SmC phase,
presented in figure 4 of [17], have been used. The factor λ = 1.

using the molecular projection. The former is closer to typical
experimental curves.

It is also possible to compare the actual temperature
variation of the thickness with that obtained using the
extrapolation of the thickness from the SmA phase multiplied
by the classical factor of cos �. Representative results are
shown in figure 4. One concludes that both the calculated
layer thickness and the average molecular projection decrease
much slower than they should, according to the classical law.
As discussed before [17], this is related to the rapid growth of
the nematic order parameter S below the SmA–SmC transition
point. One notes also that the calculated layer spacing slightly
exceeds the average projection in contrast to the previous case
presented in figure 3.

5.3. Conclusions

It has been shown in this paper that the smectic layer period can
be determined by minimization of the mean-field free energy
which takes into account the interaction between neighboring
layers. The smectic period has been calculated numerically for
the two systems with conventional and anomalously weak layer
contraction in the smectic C phase. The same two systems
have been considered in our previous paper [17] where it has
been assumed that the smectic layer spacing is approximately
equal to the average projection of the molecular long axis on
the layer normal. Here it has been shown that the temperature
variation of the layer spacing, calculated by minimization of
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Figure 4. Calculated smectic layer thickness (a) and the averaged
projection of the molecular long axis on the layer normal (b)
obtained directly for a strong SmA–SmC transition (solid) and those
extrapolated from the SmA phase and reduced by the factor of cos �
(dashed). Order parameters of the SmC phase, presented in figure 5
of [17], have been used here.

the free energy, is qualitatively similar to the variation of the
average molecular projection. Thus the latter can be used in the
first approximation to estimate the degree of layer contraction,
and to distinguish between the materials with conventional
and anomalously weak layer contraction in the SmC phase.
At the same time, there exists some quantitative discrepancy
between the calculated and the estimated layer spacing. Thus
more quantitatively reliable data can only be obtained by
direct minimization of the corresponding free energy. This
minimization, however, can only be performed if the particular
dependence of the interaction potential on the intermolecular
distance is known.

Recently, the theory developed in [16, 17] has been
used to model the temperature variation of the spontaneous
polarization, tilt and layer spacing observed experimentally for
two mixtures [22]. The use of the present model would result
in the same curves for polarization and tilt while the curves for
the layer spacing will be closer to the experimental ones.

In general, the results of this paper confirm the existence
of a correlation between average molecular projection, the
orientational order parameter with respect to the layer normal
and the smectic layer spacing. The existence of such a
correlation has recently been established experimentally for
several different smectic materials [19].
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